Electronics for IoT

Electricity

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Electricity

Topics:

- Characteristics
- Metrics (voltage, current)
- Measure
- Devices
- Circuits

Electricity

4

Electricity

- Charged particles
 - Usually electrons
- Can't see electrons
 - Only consequences of their actions

Feel?

Feel!

In the EE 49 lab ...

Water Analogy

40

Water Analogy

Water molecules ~ Electrons

Voltage

Measuring Voltage

- Digital Multi-Meter
- AC versus DC
- Wires (pipes for electrons)
- Loop:
 - Electrons need to get back to where they came from
 - Water is more flexible
 - But it's also nice when it eventually comes back ...

Experiments ... Parts!

Parts

- Distributed to each team of two in the first lab
- You'll use them throughout the semester
- A storage box is more convenient than the bag they come in
- Many parts are "multi-use": used in several labs and the project

Electrical Circuit

Circuit Symbols

Circuit Symbols

Circuit Diagram

Circuit Diagram

Mixing up wires – red to black???

What can we do with it?

Hydroelectric Dam Reservoir Powerhouse Intake Generator Penstock Turb

Spin a turbine ...

Circuit Diagram

Circuit Diagram

Current

Water flow

- Water molecules
- Water volume [m³]
- Flow [m³ / s]

Current

- Electrons
- Charge [Coulomb = C]
- Current [C / s = A]

Measuring Current

Where does the meter go?

Circuit Diagram

Measuring Voltage and Current

Circuit Diagram

Beyond "sound" ...

- What can we do with it?
 - Light the room?
 - Charge the smartphone?
 - Run the microcontroller?
- How can we figure that out?
 - Voltage
 - Current
 - ???

Power

Power

Signal Ground

Your elevation is the distance from sea level to you!

Example: Huzzah32

GPIO	ALT	μРу				μРу	ALT	GPIO
	RESET		1					
	3.3V		2					
			3	O ZILLING				
	GND		4					
26	DAC2	A0	5		28		VBAT	
25	DAC1	A1	6		27		EN 3.3V	
34	ADC6	A2	7		26		VUSB	
39	ADC3	A3	8		25	A12	LED	13
36	ADC0	A4	9		24	A11	BOOT	12
4		A5	10		23	A10		27
5	SCK	A16	11		22	A9	ADC5	33
18	MOSI	A17	12		21	A8		15
19	MISO	A18	13		20	A7	ADC4	32
16		A19	14	COMPARENT COMPANY	19	A6		14
17		A20	15	● j	18	A15	SCL	22
21		A21	16		17	A14	SDA	23

Short Circuit

41

Interpretation

- What is the current flowing?
- Depends on source, e.g.
 - Nuclear power plant
 - Solar cell

— ...

Short Circuit Current

- "Current <u>through wire</u> between any two points in a circuit"
- Whether this is a good idea or not (e.g. causes fire) depends on circuit and connection points
- Common terminology used by electrical engineers
- Use ammeter to measure, behaves like short ciruit ("wire")

Open Circuit Voltage

- "Voltage between any two points in a circuit <u>without</u> adding a wire between them"
- Note: no current flow → no sparks
- Use voltmeter to measure, behaves like open circuit ("no wire")

Typical Voltages

- Household current (ac)
- Car battery
- "Typical" Electronic circuits

Electric Shock

- Is 5V dangerous?
- 100V?
- What about this:

"Dangerous" Voltages

IoT49: Electricity

- Humans:
 - >30V if current not limited
- Integrated circuits:
 - Typical: < 5V!
 - E.g.

E. Boser

Typical Currents

- Household
- Train
- CPU
- EE 49 circuits

Summary

- Electrical quantities:
 - Voltage
 - Current
 - Power
- Components (devices):
 - Solar cell (source)
 - Buzzer
 - DMM
 - Voltage and current meter
- Circuits:
 - Symbols, diagrams
 - Short and open circuits